
Voltage Transducer LV 200-AW/2/3200

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 3200 \text{ V}$

Electrical data

\mathbf{V}_{PN}	Primary nominal r.m.s. voltage		3200		V
$\mathbf{V}_{_{\mathrm{P}}}$	Primary voltage, measuring range		0 ± 4800		V
\mathbf{R}_{M}	Measuring resistance		$\boldsymbol{R}_{_{\text{M min}}}$	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	
	with ± 15 V	@ $\pm 3200 \text{ V}_{max}$	0	120	Ω
		@ \pm 4800 V_{max}	0	60	Ω
	with $\pm 24 \text{ V}$	@ ± 3200 V _{max}	60	220	Ω
		@ $\pm 4800 V_{max}$	60	110	Ω
I _{SN}	Secondary nominal r.m.s. current		80		mΑ
K _N	Conversion ratio		3200 V	/ 80 mA	
V _c	Supply voltage (± 5 %)		± 15	24	V
I _C	Current consumption		$30(@\pm 24 V)+I_{S} mA$		
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		12 ¹⁾		kV
			1 ²⁾		kV
\mathbf{V}_{e}	R.m.s. voltage for partial dis	scharges extinction @ 50 pC	4.8		kV

Accuracy - Dynamic performance data

X _G e _L	Overall Accuracy @ \mathbf{V}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 1.0 < 0.1		% %
Ι _ο Ι _{οτ}	Offset current @ $\mathbf{I}_{\rm P}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 70°C	Typ ± 0.3	Max ± 0.3 ± 0.6	mA mA
$\mathbf{t}_{_{\mathrm{r}}}$	Response time @ 90 % of $\mathbf{V}_{_{\mathrm{P}\;\mathrm{max}}}$		200		μs

General data

$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature	- 25 + 70	°C
T_s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	80000 : 2500	
Р	Total primary power loss	8	W
$\mathbf{R}_{_{1}}$	Primary resistance @ T _A = 25°C	1280	$k\Omega$
Rs	Secondary coil resistance @ T _A = 70°C	40	Ω
m	Mass	2	kg
	Standards 3)	EN 50178	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Accessible electronic circuit
- Shield between primary and secondary circuit
- Primary resistor R₁ incorporated into the housing.

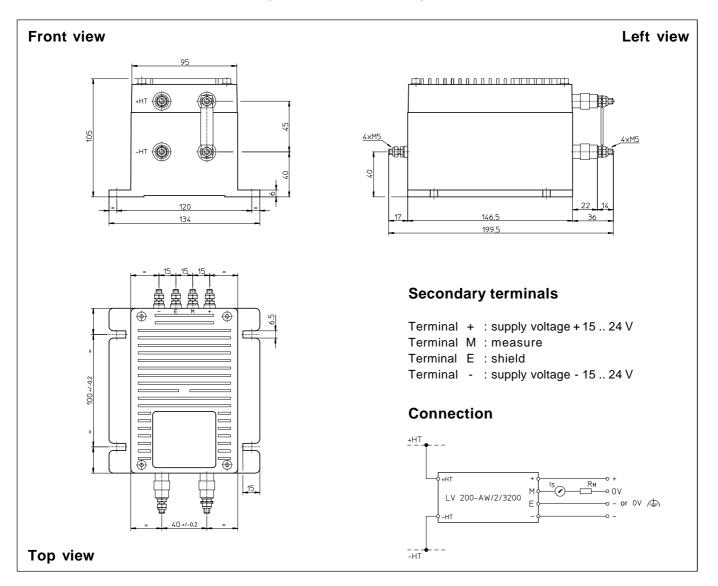
Advantages

- Good accuracy
- Very good linearity
- · Low thermal drift
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

Notes: 1) Between primary and secondary + shield


2) Between secondary and shield

3) A list of corresponding tests is available

980710/2

Dimensions LV 200-AW/2/3200 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Fastening torque

± 0.5 mm 4 holes Ø 6.5 mm M5 threaded studs M5 threaded studs 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.